FC2ブログ

ATLAS at Anywhere (旧 ATLAS at Osaka)

至近距離での重力

研究室のミーティングでの文献紹介の順番が回ってきました。来週火曜なのですが、明日から長野、そして月曜は広島と出張続きなので、その出張の間に論文を読まないとなりません。というわけで、何の論文を読むかえいやと決めてしまいました。

テーマは、1mm以下という至近距離での重力の強さの測定。測定そのものは典型的な素粒子物理の実験とはかけ離れています。そもそも粒子を使いませんから、素粒子物理の実験とは呼べないかもしれません。でも、ここ数年は余剰次元(Extra Dimension)という理論がSFチックなために(?)人気を博していて、余剰次元があると重力の強さがお馴染みの逆2乗則からずれるために、重力の強さが至近距離まで逆2乗則に従うのかを測定する実験が注目を浴びています。

力の強さは、1次元空間なら一定、2次元空間なら1/(距離)に比例、3次元空間(=我々の世界)なら1/(距離の2乗)、4次元空間なら1/(距離の3乗)、、、に比例します。直感的には以下のように考えてもらうといいかもしれません。1次元空間では光ファイバーみたいな状況をイメージしてください。実際にはファイバーの太さがありますがそこは忘れて、ファイバーの中が1次元空間だと思ってください。すると、ファイバーの一端に光を入れると、光はファイバーに沿って進むしかありませんから、どこまで行っても光の量は変わりません。よって、1次元空間では光の量は一定ですね。2次元なら、ある一点から出た光は放射状に広がっていきます。光源からの距離rの地点というのは円ですから、光源からの距離rの地点で受ける光の量は光源での量の1/(2πr)になりますよね。つまり、1/(距離)に比例してます。同様に3次元なら距離rの地点で受ける光の量は1/(4πr^2)に減る、ということで1/(距離の2乗)に比例することになります。

というわけで、力の強さというのは、私たちの世界の空間の次元によるわけです。もし3次元以外の次元があれば、重力の強さが1/(距離の2乗)からずれることになるのですが、重力の強さというのは天体のような非常に大きなスケールでは精度よく逆2乗則に従っていることが確かめられていますが、至近距離ではそれほど調べられていません。そこで、至近距離での重力の強さの測定というのが余剰次元という理論の登場で脚光を浴びています。

余剰次元というのは、私たちが認識している3次元空間の他に、その名の通りさらに多くの次元があることを仮定して構築された理論で、素粒子物理学の世界で大きな謎とされる階層性問題(電磁相互作用と弱い相互作用が統一されるエネルギースケールと、強いちから、あるいは重力までもが統一されるエネルギースケールがあまりにも違うのはなぜか?)の解決に繋がります。この理論では、私たちが認識する3次元世界と矛盾が起きないように、余剰の次元は、非常に小さな領域・空間に丸め込まれていることになっています。

今までの素粒子物理学ではゲージ対称性やローレンツ不変性といった対称性から物理法則を導いていましたが、3次元空間以外の空間があるという発想は、そこからぶっ飛んでいる点で非常にユニークだと感じます。SFチックで直感的にも面白いので人気がある理論です。そうそう、LHCでブラックホールができるかも、というのも余剰次元があると、重力の強さが逆2乗則からずれるためです。ある距離までは逆2乗則に従いますが、余剰次元が丸め込まれているごく小さな領域では逆4乗則だったり、逆5乗則だったりするわけですね。すると、通常よりも重力の強さが劇的に大きくなりますよね。そこで、LHCによって加速された陽子同士が逆2乗則に従わないくらいな短距離にまで接近すると(衝突させる粒子のエネルギーを上げるというのは、粒子間の距離を小さくすることです)、重力のエネルギーが莫大な大きさになってブラックホールができるというわけです。

話はだいぶ脱線しましたが、まあそういわけで、余剰次元という理論を背景に、至近距離での重力測定というのは素粒子物理的になかなか面白いテーマなわけです。出張中に論文を読んできます。そうか、明日からしばらく出張なので、次の更新は遅くなるかもしれません。


研究 | コメント:1 | トラックバック:0 |
<<夏の学校とシリコン検出器の国際会議 | HOME | 冷や汗>>

この記事のコメント

割と最近物理セミナーで取り上げられました。
Phys Rev D78 022002 によると、
44um程度まで exclude されていると思われます。
2009-08-27 Thu 00:10 | URL | 中村@Belle [ 編集]

コメントの投稿















コメント非公開の場合はチェック

この記事のトラックバック

| HOME |